Int. J. Heat Muss Transfer.
Printed in Great Brituin

Vol. 36, No. 9, pp. 2305-2315, 1993

(017-9310-9356.00 +0.00
« 1993 Pergamon Press Ltd

Finite-amplitude instability of mixed-
convection in a heated vertical pipe

B. B. ROGERS and L. S. YAO

Department of Mcchanical and Aerospace Engincering, Arizona State University, Tempe, AZ 85287,
U.S.A.

(Received 1 July 1992 and in final form 27 October 1992)

Abstract—The instability of flow in a heated vertical pipe is studied using weakly nonlinear instability
theory for both stably and unstably stratified cases. It is found that the dominant instability for stably
stratified flow is a thermal-buoyant instability. while that of the unstably stratified case is a Rayleigh-
Taylor instability. The weakly nonlincar theory predicts supercritical instability for the stably stratified
case. in agreement with experimental observations. In this case, it is found that a wide band of wave
numbers are lincarly unstable soon after the onset of the initial instability. This limits the range for which
the weukly nonlinear results are accurate in this case since the theory considers the growth of a single
dominant wave. The results of the weakly nonlinear calculations for unstably stratified flow indicate that
the flow is potentially subcritically unstable, again in agreement with the experimental observations. On
the other hand. the theory predicts that a large amplitude disturbance will be necessary to initiate suberitical
instability, while the amplitude of a supercritical disturbance will grow quickly as the magnitude of Ra
increases. Therefore, another possible flow transition that is consistent with experimental observations
involves rapid growth of the first azimuthal mode of a supercritical Rayleigh Taylor instability, followed
by secondary instabilities that lead quickly to turbulence. Analysis of energy transfer in the fundamental
wave demonstrates that the thermal-buoyant instability is supercritical because increases in the viscous
dissipation rate and the rate of transfer of energy from the fundamental wave back into the mean flow
overcome the destabilizing effect of an increase in the rate of buoyant production. Suberitical instability
occurs with the Rayleigh-Taylor mode when the disturbance amplitude increases to the point that the
combined destabilizing effects caused by a change in the shape of the fundamental wave induced by
nonlinear effects become larger than the stabilizing effects due to the production of the harmonic wave and
the distortion of the mean-flow. The increase in heat transfer rates due to instability predicted by the
weakly nonlinear theory is smaller than the experimental observations. However. it is demonstrated that
experimentally observed increases in N are predicted if the effects of additional waves are included in an
approximate manner.

1. INTRODUCTION

MIXED conveclion in a vertical circular pipe is a
fundamental convection problem. Unfortunately, our
understanding of this motion and the associated heat
transfer mechanisms is incomplete. An example of this
lack of understanding is often found in the analysis of
fully-developed mixed-convection in ducts, where it is
common practice to treat the problem as a paraliel
flow, ignoring the possibility of thermally induced
hydrodynamic instabilities. The parallel flow assump-
tion greatly simplifies the analysis since the velocity
and temperature fields then become easily predicted
functions of the transverse variables only. However,
as was demonstrated in refs. [1, 2}, fully developed
mixed-convection in a vertical pipe is highly unstable
due to thermal cflects, and a parallel flow will be
observed in the laboratory only under special con-
ditions. Therefore, the parallel flow assumption is
inadequate to describe mixed-convection in vertical
ducts, since the presence of flow instabilities will give
rise to an unsteady, three-dimensional motion. The
proper analysis of these problems must consider the
nonlinear growth of secondary flow patterns induced
by instability. Therefore, in this paper, we will study
these effects by using the weakly nonlinear instability

theory to model the finite-amplitude behavior of
unstable disturbances in mixed-convection in a ver-
tical pipe.

Experimental observations of mixed-convection in
heated vertical pipes indicate that the flow becomes
unstable due to thermal effects at low heating rates,
and at Reynolds numbers as low as 30 [3-5]. The
cffects of the disturbances on heat transfer rates were
substantial, with increases of 30% observed after the
onset of instability. When the flow is stably stratified
so that the density is decreasing in the upward direc-
tion, such as upward flow in a heated pipe, the initial
transition resulted in a new equilibrium, nonparallel
flow that was highly structured. On the other hand,
when the flow was unstably stratified, such as in
upward flow in a cooled pipe, the observed transition
to turbulence was more abrupt, although a tendency
for the flow to become asymmetric soon before tran-
sition was observed. Therefore, in the stably stratified
case, the instability is supercritical. However, in the
unstably stratified case, the initial instability may itself
be subcritical, or the transition may be due to a sec-
ondary instability caused by the growth of an asym-
metric supercritical disturbance.

The linear-instability analysis of Yao [1, 2] dem-
onstrated that heated flow in a vertical pipe is unstable
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the neutral curve

E,, energy transferred to harmonic wave due
to nonlinear effects

¢ complex disturbance wave speed, ¢, +ic;

D’ operator in equation (1)

D, modification of viscous kinetic
energy dissipation due to nonlinear
effects

g gravitational acceleration

h convective heat transfer coefficient

K curvature parameter for the annulus,
rl/(rﬂ - rl)

k fluid thermal conductivity

L, linear amplification rate

Nu Nusselt number, /iry/k

n azimuthal wave number

P pressure

P,,, shear energy production by fundamental

wave and distorted mean flow

NOMENCLATURE

A order (¢;)"* amplitude P,,o shear energy production by distorted
a, first Landau constant, a,,+ia,; fundamental wave and basic-statc
B order one amplitude Pr Prandtl number, v/
E, fraction of shear energy production at the r radial coordinate

neutral curve Fo pipe radius
E, fraction of buoyant energy production at Ra Rayleigh number, pfg(r,—r) /v

the neutral curve Re Reynolds number, W, (r,—r)/v
Ey viscous dissipation of kinetic energy at T,, buoyantenergy production by distorted

fundamental wave
T. pipe wall temperature

t time

u radial velocity

v azimuthal velocity
w axial velocity

z axial coordinate.

Greek symbols

2 axial wave number

B thermal expansion coefficient
¥ thermal diffusivity

n radial coordinate

0 dimensionless temperature

I vertical temperature gradient
v kinematic viscosity

P density

T slow time scale, t = #/¢;

¢ azimuthal coordinate.

in most regions of an appropriate parameter space.
both for stably and unstably stratified flow. The
results for the stably stratified case showed that the
flow becomes unstable at Ra > 70, and that the critical
value of Ra is almost independent of Re for all Re > 50.
The first azimuthal mode is found to be the least stable
mode for all Re except in a narrow band between
Re = 50 and 150, where the least stable disturbances
are axisymmetric. Therefore, the unsteady flow pat-
terns predicted by the linear theory will be a double-
spiral flow, in agreement with the experimental obser-
vations of Scheele and Hanratty [5]. The results for
the unstably stratified case show that the flow will
become unstable to the first azimuthal mode at
Ra < —90, and that the critical value of Ra is again
almost independent of Re.

Additional linear-instability studies of mixed-
convection in vertical concentric annuli relevant to
the present study have been carried out for two types
of thermal boundary conditions. In case I, each cyl-
inder was maintained at a different temperature. In
case II, a vertical temperature gradient was imposed
on the inner cyclinder and the outer cylinder was
insulated. For case I, the results for air (Pr = 0.71)
demonstrated that the instability boundary consists
of three distinct instabilities, identified by their charac-
teristic wave numbers and wave speeds [6, 7]. The

shear instability occurs at large Reynolds numbers. A
low Re thermal instability originates with an unstable
velocity distribution caused by buoyant forces. but
most of the kinetic energy for this instability is
obtained by shear production. Therefore, this is a
shear instability induced by thermal effects, and is
called the thermal-shear instability. In this problem,
another thermally induced instability appears that
bridges the gap between the thermal-shear and the
shear instabilities, which also obtains energy primarily
through shear production, called the interactive insta-
bility. Another study, which used the thermal bound-
ary conditions of case II, demonstrated that, in addi-
tion to the shear and thermai-shear instabilities, two
more thermally induced instabilities may appear [8].
When the vertical temperature gradient is negative, a
Rayleigh-Taylor type instability is possible since the
vertical density stratification is unstable. However, in
the stably stratified case, the Rayleigh-Taylor mode
is not present, and a thermal instability occurs as the
Rayleigh number, which characterizes the magnitude
of the vertical temperature gradient in this case,
increases. This instability will be a thermal-shear type
at small Prandt! numbers, but at large Prandtl num-
bers another instability appears which obtains kinetic
energy primarily by buoyant production, called the
thermal-buoyant instability.
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The results of the linear-instability studies dem-
onstrate that empirical correlations for heat transfer
and friction coefficients obtained by using flow tran-
sition criteria based on isothermal flows are likely 1o
be incorrect in mixed-convection. On the other hand,
linear theory predicts only the onset of instability
to infinitesimal disturbances. Therefore, a nonlinear
analysis 1s necessary to study the structure of the flow
field that results from linear instability. In this paper,
we address this issue by applying the weakly nonlinear
theory developed in ref. [9] to the problem of flow in
a heated vertical pipe. In Section 2 of the paper the
problem is formulated, and the linear and wcakly
nonlinear instability analyses are developed and
explained. The results of the lincar-instability analyses
of refs. [I. 2] are reviewed in Section 3.1. Analysis of
the energy transfer at the neutral curves demonstrates
that the least stable modes are the thermal-buoyant
modec in the stably stratified case and the Rayleigh-
Taylor modc in the unstably stratified casc. In Scction
3.2, the weakly nonlinear analysis of the stably strati-
fied flow predicts supercritical instability for all wave
numbers, in agreement with the experimental obser-
vations. The results for the unstably stratified casc
indicate that the flow is potentially subcritically
unstable, again in agreement with the experimental
observations. On the other hand. the theory predicts
that a large amplitude disturbance will be necessary
to initiate subcritical instability, while the amplitude
of a supercritical disturbance will grow quickly as the
magnitude of Ra increases. Therefore. a possible flow
transition will first involve the rapid growth of a super-
critical Rayleigh-Taylor instability with an azimuthal
wave number of # = |, foliowed by secondary insta-
bilities that lead quickly to turbulence. As mentioncd
earlier, this is consistent with the experimental obser-
vation of Scheele and Hanratty [5] that the velocity
profiles tend to become asymmetric before the
unstcady motion sets in.

In Section 3.3, 1t 1s demonstrated that the real por-
tion of the first Landau constant, the sign of which
predicts whether the instability is subcritical or super-
critical, consists of five parts which arise from the
following physical processes:

(1) the distortion of the mean motion;

(2) the generation of the harmonic wave ;

(3) the modification of the gradient production of
disturbance energy due to the change in the shape of
the fundamental wave ;

(4) the modification of the buoyant production of
disturbance energy due to the change in the shape of
the fundamental wave :

(5) the modification of the viscous dissipation of
the disturbance due to the change in shape of the
fundamental wave.

Analysis of these terms for the supercritical
thermal-buoyant instability demonstrates that, even
though the finite-amplitude effects increase the rate of
buoyant production, the net rate of disturbance
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energy production is decreased by nonlincar effects,
leading to a supercritical cquilibrium state. This is
primarily due to increases in the viscous dissipation
rate and the rate of transfer of energy from the fun-
damental wave back into the mean flow. On the other
hand, with the subcritical Rayleigh-Taylor mode. it
is found that subcritical instability occurs when the
combined destabilizing effects caused by the change
in the shape of the fundamental wave, processes 3
through 5 listed above, become larger than the sta-
bilizing effects due to the production of the harmonic
wave and the distortion of the mean-flow.

The results in Scction 3.1 also demonstrate that a
wide band of axial wave numbers become linearly
unstable soon afier the initial instability. For example.
the initial instability occurs at Ra = 70. but by
Ru =75, all axial wave numbers between 0.04 and 2.7
are linearly unstable. Consequently, even though the
weakly nonlincar theory will still be valid in the limit
as Ra approaches the critical Rayleigh number, Ru,.
the theory will be inaccurate as Ra increases, since
the theory considers only a single dominant unstable
wave. This restricts the range for which the weakly
nonlincar results will be accurate in this problem. In
Section 3.4, the cffect of the disturbance growth on
heat transfer rates for supcrcritical instability is
analyzed. The results of the weakly nonlinear theory
underpredict the cxperimentally observed increases in
Nu duc to flow instability. This is because the theory
only considers the growth of a single dominant wave.
However, it is also demonstrated that the exper-
imentally observed increases in N are predicted if the
effects of additional waves are included in an approxi-
mate manner. On the other hand, a completc descrip-
tion of the problem in this region requires consider-
ation of a continuous band of linearly unstable waves.

2. ANALYSIS

2.1. Formulation

The problem being studied is viscous fluid flow
driven by an external pressure gradient in a vertical
pipe. A constant heat flux is maintained on the outer
wall. The governing cquations arc the Boussinesq
equations in cylindrical coordinates:
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All lengths have been scaled by the radius of the
Lylindcr r,, the velocities by the average axial velocity,

/- the pressure by pW 2, and time by r,/W,... The
pipe wall temperature, T, increases linearly with the
axial coordinate as T, = T,+ur,z, where T, is an
upstream reference temperature and = is the dimen-
sionless axial coordinate. A dimensionless tem-
perature has been defined as

< e

T.~T

;u (,VRL’ Pr’

Since the temperature is scaled by the vertical tem-
perature gradient yu, the dimensionless temperature
will be independent of the axial coordinate, leading to
a basic-state which is a function of the radial coor-
dinate only. The parameters in the problem arc the
Reynolds number, Re = W,..r./v, the Rayleigh num-
ber, Ra = pfigrl/;v and the Prandtl number, Pr = v/,
where v is the kinematic viscosity, 7 the thermal diffu-
sivity, f# the thermal expansion coefficient and ¢ the
acceleration due to gravity. A positive value of Ra
indicates that the fluid temperature is increasing with
increasing . Thereflore, the fluid is stably stratified for
positive Ra, and unstably stratified for negative Ra.

It is worthwhile to point out that although the
problem studied in this paper is that of nonisothermal
flow up a vertical pipe, the results may also be used
to describe nonisothermal flow down a pipe. This is
because the equations governing heated upward flow
are identical to those of cooled downward flow, and
the equations of cooled upward flow arc identical to
those of heated downward flow.

2.2. Basic-state

The basic-state of the fluid is steady, parallel, lami-
nar fully developed flow. If these assumptions are
applied to (1), the basic-state will be a function of the
radial coordinate only, and the governing equations
will simplify to

d*w, 1dw dP,

& ; —Ra®, = Re— (2a)
¢°0, , 1d W 2b
dr? r dr e (2b)

where W, and ©, represent the basic-state velocity
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and temperatures respectively. The boundary con-
ditions for the basic-state are
q%",(—ol wa =221 _ e 1y <o,
r dr

The effect of the vertical temperature gradient appears
in the basic-state encrgy equation as a non-uniform
source term, with a radial distribution and magnitude
cqual to the basic-state velocity, W,. Consequently,
the basic-state temperature distribution in the radial
direction is modified from that which would occur
with a uniform wall temperature boundary condition,
where there is no vertical temperature stratification.
If it is assumed that the axial pressure gradient is
constant, the term Re (dP,/d=) may be determined by
the requirement of global mass conservation

1
j Wrdr =}
0

and the basic-statc becomes independent of Re and
Pr. The solution of the basic-state may be obtained
analytically by the use of Bessel functions with com-
plex arguments [1]. However, in the results presented
here, the equations were solved numerically using a
spectral/collocation technique, which was later used
as part of the instability analysis. Basic-state velocity
profiles for Rayleigh numbers of 0, 100 and — 100
are shown in Fig. 1. These plots show that as the
magnitude of Ra increases, the buoyant forces distort
the velocity profiles. When the outer wall is heated
(Ra > 0). the flow near the wall is accelerated. In this
case, to maintain a constant mass flow rate, the fluid
in the center of the pipe is proportionally decelerated.
When the pipe wall is cooled (Ra < 0), the opposite
occurs. As the magnitude of Ra increases, this model
will eventually predict a parallel reverse-flow region
in the pipe. However. as the plot illustrates, for both
Ra > 0 and Ra < 0, points of inflection appear in the
basic-state velocity profiles, indicating potential
for inviscid instability. This is verified by the linear-
instability calculations, which demonstrate that a
stable reverse flow region is impossible.

2.3. Linear instability
As pointed out in ref. [2], in the case of Ra < 0, the
fluid layer is initially unstable because of the unstable
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FiG. 1. Basic-state velocity profiles.
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stratification. On the other hand, with Ra > 0, the
density decreases in the vertical direction and the fluid
layer is stable. Consequently, instabilities of the stably
stratified case must be due to the fluid motion, while
those for the unstably stratified case may be either
motion-induced, or due to Rayleigh-Taylor insta-
bility. Therefore, the physical nature of the insta-
bilities observed at Ra > 0 may differ substantially
from those at Ra < 0.

The linear-instability of the basic-state is studied by
subtracting the basic-state from the governing equa-
tions and neglecting the nonlinear terms. The normal
mode form is assumed for the disturbances as ¥(r,

L5 1) = (r)@® T where o is the axial wave
number, # the integer azimuthal wave number, ¢ =
¢, +1ic; the complex disturbance wave speed and " de-
notes a disturbance quantity. The linearized dis-
turbance equations are

uor

10
'+ ; + - +ioni =0 (3a)
. . LW 4 nta
1aRe(W—c')u+Rep'——u”—7+F p:
.. 2nd
+ata+ T = 0 (3b)
. . mRep _ 0 & 0
it Re(W—=0)o4+ ——— =" — — + <5 + —
r LIS 3
.. 2ina
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. . . . L. Wonhw
it Re(W— )i+ ReitW' +ia Re p— i — — + —
+ati+Ral=0 (3d)
0 n*l
ia Re Pr(W —c)0+ Re Pri@®’ — (" — ~ 43
+af—w =0 (3e)

where the * denotes differentiation with respect to r.
The boundary conditions at the pipe wall are:

a(1) = 6(1) = (1) = (1) = 0.

As explained in ref. [1], the boundary conditions at
r = 0 will depend on the value of the azimuthal wave
number, n. For n = 0, they are:

#(0) = 5(0) = w(0) = §(0) = 0.
For n = 1, they become:

4(0) +i5(0) = w(0) = 4(0) = 0.
For n = 2, they are:

i#(0) = 5(0) = #w(0) = 6(0) = 0.

Equations (3) and the boundary conditions form an
eigenvalue problem for the complex disturbance wave
speed, ¢, with the disturbance being unstable for ¢
greater than 0. As explained in ref. [1], the equations
were discretized using a spectral Chebyshev col-
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location technique, and the stability boundary was
determined by a numerical search of the (Ra, Re. Pr.
2, n) space to determine that locus of points where
¢; = 0. For particular values of Pr and Re, as the
magnitude of Ra increases, the point on the neutral
curve that first becomes unstable defines the minimum
critical Rayleigh number, Ra,.

2.4, Finite-amplitude instability

Linear-instability theory determines the point at
which an infinitesimal disturbance becomes unstable,
but predicts unbounded exponential growth of the
disturbance. As the disturbance grows to finite size,
however, nonlinear effects modify the growth rate
predicted by linear theory. To study these effects, the
weakly nonlinear instability theory developed in ref.
[9] is applied to this problem.

To study finite-amplitude instability using weakly
nonlinear theory, the dependent variables are first
separated into Fourier components of a disturbance
wave predicted by linear-instability theory. The equa-
tions governing the harmonic components are then
solved using a perturbation expansion. In this prob-
lem, we write the Fourier expansion of, for example,
the axial velocity as follows :

w(r g, z, 1) = Wr,DE +w (r,7)E'
+wa(r, T)E*+ - +cc (4)

where E = exp (ia(z —c,t) +in¢g), o and n are the wave
numbers corresponding to Ra, and ¢, is the wave speed
of the most unstable disturbance, given by the real
portion of the eigenvalue from linear theory. In this
problem, we will obtain only the lowest order cor-
rection to the exponential growth predicted by linear
theory, and inclusion of E* and higher harmonics is
not necessary.

The functions for the harmonic components are
further decomposed by expanding in terms of the
small parameter. Using the method of multiple scales
with (¢, T = ¢;¢) results in

a @ é

2.8 s
- atan )

The following expansion of the E' wave is consistent :
W (. 7) = 6B o(r) + ¢ BIB| My () +O(e™)
(6)

where B is an order-one amplitude function. The
physical amplitude of the w,, functions is therefore
A = (¢;)">B. The expansion for the E' wave given by
equation (6) leads to the following forms for the E°
and E? waves:

W(r, 1) = Wo(r)+a|BOPW, (1) +0() (7
wa(r, 1) = ¢;(B(1)) wao(r) + O(c?). (8)

Terms of order (¢;)? and smaller are not necessary in
the present analysis. Expansions of the other depen-
dent variables corresponding to equations (6)—(8) are
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given by similar expressions. The system of harmonic
equations obtained by substituting equations (5)—(8)
into the governing equations may be solved sequen-
tially in increasing powers of ¢;. At order (c;)° the only
non-zero contribution is from the £° equations, which
become those of the basic-state. Therefore, the func-
tions W, and @, are given by basic-state velocity
and temperature distributions, respectively. At order
(¢)"*, the E' equations become those of linear-
instability, and the other harmonic components are
zero. Consequently, the functions u . v}y, Wio and 0,
are given by the eigenvectors of linear theory at the
particular values of Ra, o« and n being considered. At
order ¢, the equations for the £® and E* waves pro-
duce nonhomogeneous equations for the mean-flow
distortion functions, W, and @,, and for the harmonic
functions, iy, U1g, W1y and 0,4. The nonhomogeneous
terms in these equations involve only the functions
U1, Uygr Wio and 0,4, which are known from lower-
order analysis. Therefore, these equations may be
easily solved, since the amplitude function factors out
on each side of the equations and may be canceled.
At order (¢;)*?, the E' equations become non-
homogeneous equations with the left-hand sides con-
sisting of the linear-instability operators operating on
the functions u,,, v, w;, and 0, ,. and the right-hand
sides consisting of terms proportional to d B/dt, B and
B|B|*. The coefficients of the terms on the right-hand
sides consist of the functions determined from the
analysis at lower orders. Since the homogeneous
forms of the equations are exactly those of linear-
instability theory, the integrability condition requires
that the right-hand sides be orthogonal to the func-
tions satisfying the homogeneous adjoint problem.
This condition leads to a Landau equation

dB ,
4, =eB+aBB|" ©)

The constant a, is the first Landau constant, and
is obtained through application of the integrability
condition. Equation (9) represents a modification to
the exponential growth or decay of a disturbance pre-
dicted by linear theory. If the real part of a, is negative,
a supercritical equilibrium amplitude is predicted as
|4]* = ¢;| B|* = —ac,/(a,),, where (), denotes the real
part. In the case of («,), positive, a subcritical insta-
bility is predicted with a threshold amplitude of
|41* = laci/(a,).|.

In addition to the disturbance amplitude, the
weakly nonlinear theory predicts the following order
¢;modulation to the wave speed due to the disturbance
growth [10]

(a,)
(al)r

cr=c ¢ (10)

where ¢, is the wave speed predicted by linear theory,
and (a,); is the imaginary portion of the first Landau
constant.
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3. RESULTS AND DISCUSSION

3.1. Review of linear-instability results

Figure 2 is a diagram of the linear-instability
boundary for water (Pr = 6) in the Ra—Re plane.
Positive values of Ra imply stably stratified flow, and
negative Ra means the flow is unstably stratified. As
mentioned in refs. [1, 2] the least stable azimuthal
mode is always n = 1 for unstably stratified flow, and
is also n = 1 for the stably stratified case except for a
small range of Re between 50 and 150, where n = 0 is
less stable. In both cases, the least stable Ra is almost
independent of Re for Re > 50. Since the experimental
results for water [5, 6] are at Re > 50, in this paper
we concentrate on the results at a single value of Re
equal to 600, since all the important features of the
results for other Re in this range are found to be
identical. Furthermore, at small Re, the results are
unreliable since the mean flow has been scaled by the
average velocity, which is approaching zero in this
region. In this limit, the problem has a unique stability
character which may be investigated by defining a
dimensionless temperature based on the rate of mean
temperature increase in the fluid [11].

Since it is known that isothermal flow in a circular
pipe is unconditionally stable to infinitesimal dis-
turbances [12], the linear-instabilities shown on
Fig. 2 must be either of the thermal-shear, thermal-
buoyant or Rayleigh-Taylor type. This may be deter-
mined by investigation of the production and dissipa-
tion of disturbance kinetic energy at the neutral curve.
The balance of disturbance kinetic energy for an
infinitesimal disturbance is given by

G s 2 s _ . dw Ra |
a(u +5 40D = <un dr>_ Re<“0>

1
- E((Vﬁ)2+(VL3)2+(VlT’)Z> =E+E+E; (11)

where the brackets {( > imply integration over the
volume of the disturbance wave. The integrals in equa-
tion (11) may be evaluated by making use of the
eigenvectors obtained in the linear-instability analysis.
As equation (11) demonstrates, at the neutral curve a
steady balance between the production and dis-
sipation of disturbance energy is maintained. The first

150

™ —\_\1":‘ Unstabie 4
of oo ¥ Suable
ol
o = Stable
-100 |- /’n]i\‘ { ’
Unstable
-150

U 100 200 300 400 500 600 700 800
Re
FiG. 2. Linear-instability boundary in Ra-Re plane.
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term in equation (11) represents the shear production
of energy due to the Reynolds stress/mean-flow strain-
rate interaction. The second term represents the pro-
duction of kinetic energy from the buoyant potential
due to the fluctuating body force, and the last term
represents the dissipation of kinetic energy due to
viscous action. As this equation shows, in non-
isothermal flow, the disturbance kinetic energy may
be obtained from two sources in a thermally induced
instability. If the shear production is dominant, the
instability will be of the thermal-shear type, while if
the buoyant production is pre-eminent, the instability
will be either a thermal-buoyant or a Rayleigh-Taylor
mode.

In this case, at Re = 600, in stably stratified flow,
the results demonstrate that E, = 1.09, E, = —0.09
and E, = —1.0. Therefore, this is the thermal-
buoyant mode, since the Rayleigh-Taylor mode
does not appear with Ra > 0. This is the expected
result, since it has been demonstrated in ref. [8] that,
in a heated annulus, the thermal-buoyant mode will
be dominant for Pr> 2.5. In the case of unstable
stratification at this Re, the buoyant mechanism
is also dominant, E,=1.01, E,= —0.01 and
E;= —1.0. In this case, however, it is not clear
whether the instability is the thermal-buoyant or the
Rayleigh-Taylor mode, since they both obtain most
of their energy from the buoyant mechanism.
However, we find that the least stable thermal insta-
bility is the Rayleigh-Taylor mode, since the dis-
turbance appears as two long traveling waves moving
in opposite directions, one on each side of the pipe

[8].

3.2. Nonlinear results

Figure 3 is a plot of the linear-instability boundary
in (Ra—o) space at Re =600, Pr=6 and n =1 for
stably stratified flow. As this plot illustrates, the criti-
cal value of Ra does not vary a great deal for a wide
band of axial wave numbers. For example, the least
stable point on this curveis Ra, = 70 ato = 0.1. How-
ever, by Ra = 75, the flow is linearly unstable for all
wave numbers between o = 0.04 and 2.7. Therefore,
as Ra increases, the mode that will be amplified is not
clear from this analysis, since any of the potentially
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FiG. 3. Linear-instability boundary in Ra—« plane and ¢, vs
o at Re = 600 for Ra > 0.
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unstable waves may grow and interact with other
unstable modes. Because of the wide band nature of
this instability, prediction of the detailed flow patterns
and temperature distributions at points away from
the neutral curve is beyond the scope of the classical
weakly nonlinear theory. On the other hand. the
results are still formally valid in the limit as Ra
approaches Ra,, and, consequently, the analysis may
be used to explain the initial trends in the transition
process.

The values of @, at selected points along the ncutral
curve shown in Fig. 3 are given in Table 1. The results
in Table 1 show that a,, is negative for all wave
numbers. Therefore, this analysis predicts super-
critical instability. in agreement with the experimental
observations. The results in Table 1 also show that
the magnitude of a,, increases with increasing x at this
condition. As mentioned in Section 2.4, the physical
amplitude of supercritical disturbances is given by
|A]? = —ac,a,, with the numerical value of a,, depend-
ing on the normalization chosen for the eigenvectors
obtained from linear-instability theory. Therefore, for
constant values of ¢; and q,,. the shorter wavelength
(larger wave number) disturbance will amplify faster.
The results in Table | indicate, however, that the rate
of increase of the magnitude of «, with increasing
wave number more than compensates for this effect.
and that the long wavelength disturbances will be
amplified faster. On the other hand, the kinematics of
long wavelength disturbances associated with small
wave numbers result in minimal amounts of trans-
verse mixing of the fluid. Consequently, their effects
on heat transfer and friction coefficients are pro-
portionally smaller than those of similar waves of
shorter wave lengths, where the transverse velocity
components will be larger.

As may be concluded from equation (10), for super-
critical instability if the value of @, is negative, the
growth of the disturbance will increase the wave speed,
while the opposite will occur for positive ;. There-
fore, the results in Table 1 show that the wave speed
of the long wavelength disturbances, with o < 0.2, will
be slowed slightly by the disturbance growth. On the
other hand, with « > 0.2, the disturbances will be
accelerated, and the observed wave speeds will be

Table 1. Values of the first Landau constant at the neutral
curve for Ra >0

Re Ra, o a,

600 4 0.05 —1.204+0.70i
600 70.0 0.075 —2.60+1.30i
600 70.9 0.1 —4.49+1.55i1
600 72.7 0.2 —14.64+0.10i
600 70.8 0.4 —544—15.1
600 70.4 0.6 —115—-54.4i
600 70.4 1.0 —273-210i
600 71.3 1.5 —483—507i
600 72.6 2.0 —652—964i
600 74.3 25 —745— 14411
600 76.4 3.0 —761—1907i




2312

higher than those predicted by linear-instability
theory.

It is worthwhile to mention that the weakly non-
linear theory will fail if the complex wave speed of the
fundamental wave is an eigenvalue of the homo-
geneous form of the harmonic equations. Intuitively,
this seems an unlikely contingency. However, in this
problem we do find that the eigenvalue is insensitive
to changes in wave number for stably stratified flow.
To illustrate this, consider the plot of ¢, vs the axial
wave number in Fig. 3, for stably stratified flow at
Re = 600. These results show that the wave speed ¢,
does not vary significantly with a. The neutral curve,
also shown in Fig. 3, represents the point ¢; = 0, and
as has been discussed, Ra, is likewise insensitive to
changes in «. Since the eigenvalues of the fundamental
and harmonic problems are never found to be ident-
ical, there is no theoretical difficulty in solving the
equations. However, the numerical values of the
eigenvalues are close enough so that care must be
taken to avoid numerical difficulties in the com-
putation of the harmonic functions. In addition, these
results imply that linearly unstable oscillations of the
harmonic wave may not be ignored except very near
the neutral curve.

The linear-instability boundary in the (Ra—a) space
at Re = 600 for unstably stratified flow at Re = 600
is shown in Fig. 4. As mentioned earlier, in this case
the least stable thermal mode is the Rayleigh-Taylor
instability which is a long-wavelength instability as
the figure illustrates. However, a dip in the neutral
curve near o = 0.8 is caused by the presence of the
asymmetric thermal-shear instability. Comparison of
this result with Fig. 3 illustrates the instability bound-
ary for this case encompasses a narrower waveband
than is the case with stably stratified flow.

The results of the calculation of a,, for Ra < 0 at
Re = 600 are given in Table 2. Since g, is positive at
o = 0.10, these results indicate that the flow is poten-
tially subcritically unstable, in agreement with the
experimental observations. On the other hand, the
value of a, is negative over most of the neutral curve.
This 1s illustrated in Fig. 4, where the neutral curve is
represented by a broken line when g, > 0, while a
solid line indicates 4, < 0. As these results show, only
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Table 2. Values of the first Landau constant at the neutral
curve for Ra < 0

Re Ra, o a,

600 —-87.2 0.05 —0.05-0.09
600 87.3 0.10 0.07-0.2i
600 95.6 0.20 —0.20—-0.52i
600 —112 0.40 —0.54—1.5h
600 - 127 0.60 —4.53-0.24i
600 —132 0.80 —65.7+4.92
600 —136 1.0 — 107+ 0.40i

a relatively narrow band of wave numbers, from
=007 to 0.13, are found to be subcritically
unstable. In addition, the magnitude of the Landau
constant in this region is relatively small, indicating
that a large amplitude disturbance will be necessary
to initiate subcritical instability. On the other hand,
the value of g, is also small at supercritical wave
numbers, which indicates that the amplitude of a
supercritical disturbance will grow quickly as the mag-
nitude of Ra increases. Because of the large amplitude
necessary to induce subcritical instability, the results
presented here indicate that a possible flow transition
will first involve the rapid growth of a supercritical
Rayleigh-Taylor instability with an azimuthal wave
number of n = 1, followed by secondary instabilities
that lead quickly to turbulence. This is consistent with
the experimental observations of Scheele and Han-
ratty [5] who noted that, although the transition to
turbulence was abrupt, the velocity profiles tended to
become asymmetric before the unsteady motion set
in.

3.3. Discussion

To gain further insight into the underlying physical
phenomena that determine the behavior of subcritical
and supercritical disturbances, the Landau equation
(9) may be put in the following form [10]:

dj4f®

dt = 2otci|A|z+(P,0,+E‘2+P1,0+T“+D1,)|A|4

=Lo+Pio +E+P o+ T, +Dy,. (12)

The expressions for the terms on the right-hand side
may be found in the Appendix at the end of this paper.
The first term on the right-hand side of equation (12),
L,, is the amplification rate from linear theory. L, will
be positive for supercritical states, and negative for
subcritical states. The second term, P,,,, represents
the decrease in the gradient production of disturbance
kinetic energy due to the interaction between the fun-
damental disturbance and the distorted mean velocity
gradient. Since the energy required for the distortion
of the mean flow is obtained from the disturbance,
this term will be negative, and will reduce the growth
rate of a supercritical instability. The third term in
equation (12), E,,, accounts for the transfer of dis-
turbance energy from the fundamental to the har-
monic wave. The last three terms, P, o, T,, and D,,,



Instability of mixed-convection

all arise because of distortion of the radial shape of the
fundamental wave caused by the disturbance growth.
Since the terms P,,, and E,, lead to supercritical
instability. for subcritical instability to exist. these
terms must be positive and outweigh the combined
cffects of P, and E,. The term P, represents the
modification of the gradient production of dis-
turbance kinetic energy due to the change in the dis-
turbance shape. The next term, T,,, represents the
modification in the buoyant production of dis-
turbance kinetic energy due to the change in shape of
the disturbance, while the last term. D, . represents a
modification in the rate of viscous dissipation of kin-
eticenergy. If P, is positive, the disturbance contour
is changing to a shape more favorable for shear pro-
duction of disturbance energy. Likewisc. il T, is posi-
tive, the modified disturbance shape is more favorable
for buoyant production of disturbance energy. while
positive values of D, imply a decrease in the viscous
dissipation ratc of the disturbance kinetic encrgy.
The terms in equation (12) are plotted vs the square
of the disturbance amplitude for the supcrcritical
thermal-buoyant instability at Re = 600, z = 0.6 and
Ra = 70.51n Fig. 5. Since this flow is linearly unstable,
the magnitude of L increascs lingarly with increasing
amplitude. As these results demonstrate, d|4}-ds is
negative for 4 > A,, and positive for 4 < 4,. There-
fore, A = A, is a stable equilibrium point, since the dis-
turbance amplitude will grow for 4 < A, and decay
for 4 > A.. The results also show that the modi-
fication in the rate of buoyant energy production.
characterized by T, increases the growth rate of the
supercritical instability. However. the destabilizing
eflect of T, is offset by the combined stabilizing cficets
of Py, Py, and D,,. Of these terms, P, is sub-
stantially smaller than P, ,, and D, as the plot shows.
The results also demonstrate that the transfer of
energy to the harmonic, E |, is very small in this case.
The conclusion is that with the supercritical thermal-
buoyant mode, even though finite-amplitude effects
increase the rate of buoyant production, the net rate
of disturbance energy production is decreased by non-
linear effects. This is primarily due to increases in the
viscous dissipation rate and the rate of transfer of
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FiG. 5. Plot of terms in equation (12) vs amplitude ratio for
supercritical thermal-buoyant instability with Ra > 0.
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energy from the fundamental wave back into the mean
flow.

As has been discussed. the Rayleigh-Taylor insta-
bility has a small region of subcritical instability
between 7 = 0.07 and 0.13. To investigate the pro-
cesses responsible for this behavior. in Fig. 6 we plot
the magnitude of the terms in equation (12) vs the
ratio of the square of the disturbance amplitude and
the subcritical threshold amplitude at = = 0.1 and
Ra = 87.2. In this casc, the low is lincarly stable, and
L, decreases lincarly with increasing amplitude. The
results also show that the point 4 = A4, is an unstable
cquilibrium point since the disturbance will grow if
A > A, and decay if 4 < A,. As with the supercritical
thermal-buoyant mode. in this case. the disturbance
growth rate is decreased by E,and P,,,,. In addition.
the transfer of encrgy from the fundamental wave to
the harmonic, characterized by E .. is much more
significant for this instability, while the transfer of
cnergy from the disturbance back into the mean flow
is of less importance. as Fig. 6 illustrates. In this case.
however, the stabilizing effects of these terms are over-
come by the combined destabilizing effects of the
terms arising from the change in the shape of the
fundamental wave, P, ,. T, and D . As with the
thermal-buoyant instability. the increase in the rate of
buoyant production of energy is the largest desta-
bilizing term. However. the decrcase in viscous dis-
sipation and the increasc in gradient production are
also significant. as Fig. 6 illustrates. Therefore, in this
case. subcritical instability will occur as the dis-
turbance amplitude increases when the combined
destabilizing eftects caused by the change in the shape
of the fundamental wave become larger than the sta-
bilizing cflects due to the production of the harmonic
wave and the distortion of the mean-flow.

As has been pointed out, in this problem the range
of accuracy of the weakly nonlinear expansion is limited
to the rcgion very near the necutral curve because of
the large wave band of disturbances that become
unstable at ncarly the same value of Ra, in particular
for the casc of stably stratified flow. This is because
the assumption of a single dominant mode is strictly
justifiable only in this limit. This limitation occurs
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because the weakly nonlinear theory ignores linearly
unstable modes of the harmonic wave and assumes it
is forced entirely by the fundamental. The pre-
sumption will be vahd if the fundamental wave is
amplified (¢;, > 0) while all eigenmodes of the har-
monic wave arc damped (¢;> < 0). Furthermore. even
if the harmonic wave is itsell linearly unstable,
(¢;2 > 0), the forced components will dominate if
|eir] > |cia]. However, if ¢ ~ ¢;;. unstable eigenmodes
of the harmonic wave will appear which are the same
order as those of the fundamental wave, and the waves
will interact at second order. To study these phenom-
ena requires development of a wave-interaction
theory for a continuous spectrum of unstable
waves, which we are presently undertaking.

3.4, Effects on heat transfer
A Nusselt number may be defined for this problem
as

o
J WOrdr
0

where /1 is the convective heat transfer coefficient and
k the fluid thermal conductivity. The Nusselt number
may be determined by substituting the results of the
weakly nonlinear calculations into equation (7), and
cvaluating the terms in equation (13). The results of
this calculation for Re = 600 and Ru > 0 at a wave
number of « = 1 arc given by the single-wave results
in Fig. 7. In this case, supercritical flow instability
occurs at Ra = 70.5, and the change in the rate of
increase of Nusselt number with increasing Ra is evi-
dent at this point. This demonstrates that heat transfer
correlations obtained analytically by usc of the par-
allel flow assumption are inadequalc in mixed-
convection. For Ra slightly larger than Ra, = 70.4, the
increase in the heat transfer rate predicted by this
model will be accurate, since the analysis is valid in
the limit as Ra — Ra.. On the other hand, although
precise numerical results were not presented at values
of Ra that were this small, the plot of Nusselt number
vs Ra from the experimental work of ref. [3] indicates
that the increase in Nu due to instability is about 20%
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at Ra = 100, while the single-wave weakly nonlinear
thcory predicts a much smaller increase in Nusselt
number due to instability at this point, as Fig. 7 illus-
trates. This is not surprising, since. as discussed in the
previous scction, 1n this flow a continuous band of
waves become unstable at ncarly the same time.
Unfortunately, no dctailed experimental measure-
ments of the unsteady flow patterns are available to
indicate which of the unstable waves become domi-
nant. However, the cfiect of multiple waves may be
accounted for approximately by ignoring wave inter-
actions and including the contributions from cach
wave individually. If this approach is taken, the
Nusselt number may be written as follows:

N
Nu = Nu,+ Z Nu,

=1

(14)

where Nu, is the Nusselt number due to the basic-
state. and the Nu, are the individual contributions of
each of the N unstable waves. Figure 7 also includes
plots of Nu vs Ra at Re = 600 for four and cight
waves. As these results show. a more substantial
increase in heat transfer is obtained by this model.
with the cight wave model predicting the exper-
imentally observed increase in Nu of 20% at
Ra = 100. However, since the results depend on the
number of waves present, unless detailed cxperimental
mcasurements become available which would allow a
proper choice of wave numbers to be included in the
model, it is difficult to make conclusions about the
detailed structure of the unsteady flow. In addition,
this analysis does not include the nonlinear interac-
tions which will be present among the unstable waves.

4. CONCLUSIONS

Analysis of the energy transfer for the instability of
stably stratified flow in a heated vertical pipe has
shown that this is the thermal-buoyant instability.
The weakly nonlinear instability theory has predicted
supercritical instability for all wave numbers, in agree-
ment with the experimental observations. Analysis of
the terms which make up the real part of the Landau
constant shows this instability is supercritical because
increases in the viscous dissipation rate and the rate
of transfer of energy from the fundamental wave back
into the mean flow overcome the destabilizing cffect
of an increase in the rate of buoyant production. It is
found that a wide band of wave numbers become
linearly unstable soon after the initial instability.
Thercefore, even though the weakly nonlinear theory
is valid in the limit as R« approaches Ra,, the theory
will be inaccurate as Ra increases, since it considers
only a single dominant wave. As expected the increase
in Nusselt number due to flow instability predicted by
the single-wave theory is smaller than the exper-
imentally observed values. This is due to the fact that
the instability involves more than the most unstable
wave. A complete description of the phenomena
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requires  consideration of a continuous band of
unstable waves, which is currently being studied.

The results for the unstably stratified case dem-
onstrate that this instability is the Rayleigh-Taylor
mode. The weakly nonlinear caiculations indicate that
the flow is potentially subcritically unstable. again in
agrecment with the cxperimental observations. The
subcritical instability occurs when the disturbance
amplitude increases to the point that the combined
destabilizing effects caused by the change in the shape
of the fundamental wave become larger than the sta-
bilizing effects due to the production of the harmonic
wave and the distortion of the mean-flow. On the
other hand, the weakly nonlinear theory predicts that
a large amplitude disturbance will be necessary to
initiate subcritical instability. while the amplitude of
a supercritical disturbance will grow quickly as the
magnitude of Ra increases. Therefore, a possible flow
transition will first involve the rapid growth of a super-
critical Rayleigh—Taylor instability with an azimuthal
wave number of 17 = 1, followed by secondary insta-
bilities that lead quickly to turbulence. This is con-
sistent with the experimental observations of Scheele
and Hanratty [5] who noted that, although the tran-
sition to turbulence was abrupt. the velocity profiles
tended to become asymmelric before the unsteady
motion set in.
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APPENDIX

The balance of kinetic energy contained in the fun-
damental wave results in the following cquation :
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where the overbar implies the spatial mean and the brackets
{ »imply integration over the volume of the wave. As equa-
tion (12) implies. if equations (6)-(8) are substituted into
equation (A1), the equation which results will be of the same
form as the real part of equation (9). The formulas for the
terms in equation (12) are given below.
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