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Abstract-The instability of tlow in a heated vertical pipe is studied using weakly nonlinear instability 
theory for both stably and unstably stratified cases. It is found that the dominant instability for stably 
stratifcd llow is a thcmmal-buoyant instability. while that ot’ the unstably stratilied case is a Rayleigh- 
Taylor instability. The weakly nonlinear theory predicts supcrcritical instability for the stably stratilicd 

cast. in agrccmcnt with experimental observations. In this cast. it is found that 21 wide band 01‘ wave 
numbers arc linearly unstable soon after the onset of the initial instability. This limits the range for which 

the weakly nonlinear results are accurate in this cast since the theory considers the growth of a single 
dominant wave. The results OT the weakly nonlinear calculations for unstably stratified llow indicate that 

the tlovv is potentially subcritically unstable. again in agreement with the experimental observations. On 
the other hand. the theory predicts that a large amplitude disturbance will bc necessary to initiate subcritical 

instability. while the amplitude of a supcrcritical disturbance will grow quickly as the magnitude of Ro 
increases. Therefore. another possible flow transition that is consistent with sxperimental observations 

involves rapid growth of the first azimuthal mode of a supcrcritical Raylcigh Taylor instability. followed 
by secondary instubilitics that lcad quickly to turbulence. Analysis of cncrgy transfer in the fundamental 

wave demonstrates that the thermal-buoyant instability is supercritical because increases in the viscous 
dissipation rate and lhc rate ol’ transfer of energy from the fundamental wave back into the mean llow 

ovcrcomc the destabilizing cffcct OT an increase in the rate oT buoyant production. Subcritical instability 
occurs with the Raylcigh Taylor mode when the disturbance amplitude increases to the point that the 

combined destabilizing efects caused by a change in the shape of the fundamental wave induced by 
nonlinear cfTcets become larger than the stabilizing eflects due to the production or the harmonic wave and 

the distortion of the mean-Row. The increase in heat transrcr rates due to instability predicted by the 
weakly nonlinear theory is smaller than the experimental observations. However. it is demonstrated that 

cxpcrimentally observed increases in Nrr are predicted if the erects of additional waves are included in an 
approximate manner. 

1. INTRODUCTION 

MIXED convection in a vertical circular pipe is a 
fundamental convection problem. Unfortunately. our 
understanding of this motion and the associated heat 
transfer mechanisms is incomplete. An example of this 
lack of understanding is often found in the analysis of 
fully-developed mixed-convection in ducts, where it is 
common practice to treat the problem as a parallel 
flow. ignoring the possibility of thermally induced 
hydrodynamic instabilities. The parallel flow assump- 

tion greatly simplifies the analysis since the velocity 

and temperature fields then become easily predicted 

functions of the transverse variables only. However, 
as was demonstrated in refs. [I. 21, fully developed 
mixed-convection in a vertical pipe is highly unstable 
due to thermal effects, and a parallel flow will be 
observed in the laboratory only under special con- 
ditions. Therefore. the parallel flow assumption is 
inadequate to describe mixed-convection in vertical 
ducts, since the presence of flow instabilities will give 
rise to an unsteady, three-dimensional motion. The 
proper analysis of these problems must consider the 
nonlinear growth of secondary flow patterns induced 
by instability. Therefore, in this paper, we will study 
these effects by using the weakly nonlinear instability 

theory to model the finite-amplitude behavior of 
unstable disturbances in mixed-convection in a ver- 
tical pipe. 

Experimental observations of mixed-convection in 
heated vertical pipes indicate that the flow becomes 
unstable due to thermal effects at low heating rates, 
and at Reynolds numbers as low as 30 [3-51. The 
cffccts of the disturbances on heat transfer rates were 
substantial, with increases of 30% observed after the 
onset of instability. When the how is stably stratified 
so that the density is decreasing in the upward direc- 
tion, such as upward flow in a heated pipe. the initial 

transition resulted in a new equilibrium, nonparallel 
flow that was highly structured. On the other hand, 
when the flow was unstably stratified, such as in 
upward flow in a cooled pipe, the observed transition 
to turbulence was more abrupt. although a tendency 
for the flow to become asymmetric soon before tran- 
sition was observed. Therefore, in the stably stratified 
case, the instability is supercritical. However, in the 
unstably stratified cast, the initial instability may itself 
be subcritical, or the transition may be due to a sec- 
ondary instability caused by the growth of an asym- 
metric supercritical disturbance. 

The linear-instability analysis of Yao [I. 21 dem- 
onstrated that heated flow in a vertical pipe is unstable 
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NOMENCLATURE 

A order (c,) ’ ’ amplitude P II" shear energy production by distorted 

‘1 I first Landau constant, N,,+~cI,, fundamental wave and basic-state 
B order one amplitude PI Prandtl number, r/; 

E, fraction of shear energy production at the I radial coordinate 
neutral curve I’, pipe radius 

Eh fraction of buoyant energy production at RCI Rayleigh number, @~(r,,-r,)“/yr 
the neutral curve Re Reynolds number. W.,Jl-,,-r,)/~ 

Ed viscous dissipation of kinetic energy at T,, buoyant energy production by distorted 
the neutral curve fundamental wave 

El? energy transferred to harmonic wave due T, pipe wall tcmperaturc 
to nonlinear effects I time 

c complex disturbance wave speed, c,+ ic, II radial velocity 
D2 operator in equation (I ) 1’ azimuthal velocity 

D,, modification of viscous kinetic 1,’ axial velocity 
energy dissipation due to nonlinear : axial coordinate 
effects 

9 gravitational acceleration Greek symbols 
I1 convective heat transfer coefficient axial wave number 
K curvature parameter for the annulus, ;i thermal expansion coefficient 

r,l(r,--r,) i’ thermal diffusivity 
k fluid thermal conductivity ‘1 radial coordinate 
Lo linear amplification rate 0 dimensionless temperature 
NM Nussclt number, hr,,/k /’ vertical temperature gradient 
II azimuthal wave number 1’ kinematic viscosity 
P pressure P density 
P I", shear energy production by fundamental slow time scale, r = l/c, 

wave and distorted mean flow azimuthal coordinate. 

in most regions of an appropriate parameter space. 
both for stably and unstably stratified flow. The 
results for the stably stratified case showed that the 
flow becomes unstable at Ru > 70, and that the critical 
value of Ra is almost independent of Re for all Re > 50. 
The first azimuthal mode is found to be the least stable 
mode for all Re except in a narrow band between 
Re = 50 and 150, where the least stable disturbances 
are axisymmetric. Therefore, the unsteady flow pat- 
terns predicted by the linear theory will be a double- 
spiral flow, in agreement with the experimental obser- 
vations of Scheele and Hanratty [5]. The results for 
the unstably stratified case show that the flow will 
become unstable to the first azimuthal mode at 
Ra < -90, and that the critical value of Ra is again 
almost independent of Re. 

Additional linear-instability studies of mixed- 
convection in vertical concentric annuli relevant to 
the present study have been carried out for two types 
of thermal boundary conditions. In case I, each cyl- 
inder was maintained at a different temperature. In 
case II, a vertical temperature gradient was imposed 
on the inner cyclinder and the outer cylinder was 
insulated. For case I, the results for air (Pr = 0.71) 
demonstrated that the instability boundary consists 
of three distinct instabilities, identified by their charac- 
teristic wave numbers and wave speeds [6, 71. The 

sherrr instability occurs at large Reynolds numbers. A 
low Re thermal instability originates with an unstable 
velocity distribution caused by buoyant forces. but 
most of the kinetic energy for this instability is 
obtained by shear production. Therefore, this is a 
shear instability induced by thermal effects. and is 
called the rhermal-sherrr instability. In this problem, 
another thermally induced instability appears that 
bridges the gap between the thermal-shear and the 
shear instabilities, which also obtains energy primarily 
through shear production. called the inrernctiue insta- 
bility. Another study, which used the thermal bound- 
ary conditions of case II, demonstrated that, in addi- 
tion to the shear and thermal-shear instabilities, two 
more thermally induced instabilities may appear [8]. 
When the vertical temperature gradient is negative, a 
Ruyleigll-Taylor type instability is possible since the 
vertical density stratification is unstable. However, in 
the stably stratified case, the Rayleigh-Taylor mode 
is not present, and a thermal instability occurs as the 
Rayleigh number, which characterizes the magnitude 
of the vertical temperature gradient in this case, 
increases. This instability will be a thermal-shear type 
at small Prandtl numbers, but at large Prandtl num- 
bers another instability appears which obtains kinetic 
energy primarily by buoyant production, called the 
thermal-buoyant instability. 
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The results of the linear-instability studies dem- 

onstratc that empirical correlations for heat transfer 

and friction coefficients obtained by using How tran- 
sition criteria based on isothermal flows arc likely to 

bc incorrect in mixed-convection. On the other hand, 

lincar theory predicts only the onset of instability 
to infinitesimal disturbances. Thcrcforc, a nonlinear 

analysis is necessary to study the structure of the flow 
field that results from linear instability. In this paper. 

WC address this issue by applying the weakly nonlinear 

theory devclopcd in ref. [9] to the problem of flow in 

a heated vertical pipe. In Section 2 of the paper the 
problem is formulated. and the linear and weakly 

nonlinear instability analysts arc dcvclopcd and 
explained. The results of the linear-instability analysts 

of refs. [I. 21 are reviewed in Section 3. I. Analysis 01 

the cncrgy transfer at the neutral curves demonstrates 

that the Icast stable modes arc the thermal-buoyant 
mode in the stably stratified USC and the Raylcigh- 

Taylor mode in the unstably stratifcd cast. In Section 

3.1, the weakly nonlinear analysis of the stably strati- 
ficd flow predicts supcrcritical instability for all wave 

numbers. in agrccmcnt with the cxpcrimcntal obscr- 

vations. The results for the unstably stratified cast 

indicate that the flow is potentially subcritically 
unstable, again in agreement with the experimental 

observations. On the other hand. the theory predicts 
that a large amplitude disturbance will bc ncccssary 

to initiate subcritical instability, while the amplitude 
of a supcrcritical disturbance will grow quickly as the 

magnitude of RN increases. Therefore. a possible flow 
transition will first involve the rapid growth ofa super- 

critical Raylcigh-Taylor instability with an azimuthal 

wave number of II = I. foliowcd by secondary insta- 

bilities that lcad quickly to turbulcncc. As mentioned 
earlier, this is consistent with the experimental obser- 

vation of Scheele and Hanratty [5] that the velocity 
profiles tend to become asymmetric before the 

unsteady motion sets in. 

In Section 3.3, it is demonstrated that the real por- 

tion of the first Landau constant. the sign of which 
predicts whether the instability is subcritical or supcr- 

critical, consists of five parts which arise from the 
following physical processes : 

(I) the distortion of the mean motion ; 

(2) the gcncration of the harmonic wave ; 

(3) the modification of the gradient production of 
disturbance energy due to the change in the shape of 

the fundamental wave : 
(4) the modification of the buoyant production of 

disturbance energy due to the change in the shape 01 

the fundamental wave : 
(5) the modification of the viscous dissipation of 

the disturbance due to the change in shape of the 

fundamental wave. 

Analysis of these terms for the supercritical 

thermal-buoyant instability demonstrates that, even 

though the finite-amplitude effects increase the rate of 

buoyant production, the net rate of disturbance 

energy production is decreased by nonlinear cll‘ccts. 
Icading to a supercritical equilibrium state. This is 

primarily due to incrcascs in the viscous dissipation 

rate and the rate of transfer of cncrgy from the fun- 

damental wave back into the mean How. On the other 
hand, with the subcritical Raylcigh-Taylor mode. it 

is found that subcritical instability occurs when the 
combined destabilizing cfTccts caused by the change 

in the shape of the fundamental wave. proccsscs 3 
through 5 listed above, become larger than the sta- 

bilizing erects due to the production of the harmonic 

wave and the distortion of the mean-How. 
The results in Section 3.1 also dcmonstratc that a 

wide band of axial wave numbers bccomc linearly 

unstable soon after the initial instability. For example. 
the initial instability occurs at Rtr = 70. but by 

Rtr = 75, all axial wave numbers bctwccn 0.04 and 7.7 

arc linearly unstable. Consequently. even though the 
weakly nonlinear theory will still bc valid in the limit 

as Rtr approaches the critical Raylcigh number. Rtr,. 
the theory will bc inaccurate as Ru incrcascs. since 
the theory considers only a single dominant unstable 

wave. This restricts the range for which the weakly 

nonlinear results will bc accurate in this problem. In 
Section 3.4, the cffcct of the disturbance growth on 

heat transfer rates for supcrcritical instability is 

analyzed. The results of the weakly nonlincur theory 
undcrprcdict the cxpcrimcntally obscrvcd incrcascs in _ 

Nu due to How instability. This is because the theory 

only considers the growth of a single dominant wave. 
However. it is also demonstrated that the cxpcr- 

imentally obscrvcd increases in NIP arc predicted if the 
effects of additional waves arc included in an approxi- 

mate manner. On the other hand, a complctc dcscrip- 

(ion of the problem in this region rcquircs considcr- 
ation of a continuous band of linearly unstable waves. 

2. ANALYSIS 

The problem being studied is viscous fluid flow 

driven by an cxtcrnal pressure gradient in a vertical 

pipe. A constant heat flux is maintained on the outer 
wall. The governing equations arc the Boussinesq 

equations in cylindrical coordinates : 
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All lengths have been scaled by the radius of the 
cylinder. I’,,, the vclocitics by the average axial velocity. 
M/,,,, the pressure by p CV~:,, and time by r,/kV:,,.. The 
pipe wall temperature. r,,, increases linearly with the 
axial coordinate as r,, = T,,+jcr,,:. where T,, is an 
upstream rcfcrencc tempcraturc and I is the dimen- 
sionless axial coordinate. A dimensionless tcm- 
pcrature has been defined as 

T,, - T (I= ~~ 
IN,, Re Pr 

Since the temperature is scaled by the vertical tcm- 
pcraturc gradient il, the dimcnsionlcss temperature 
will bc indcpcndcnt of the axial coordinate, leading to 
a basic-state which is a function or the radial coor- 
dinate only. The parameters in the problem arc the 
Reynolds number, Re = W.,,,,r,,/v. the Rayleigh num- 
ber. Ra = ,~/~‘gr;;‘/;r and the Prandtl number. Pr = v/y, 
where 1’ is the kinematic viscosity, ;’ the thermal dilTu- 
sivity, /J the thermal expansion coeficient and 9 the 
acceleration due to gravity. A positive value of Rrr 
indicates that the fluid tempcraturc is increasing with 
increasing :. Thererorc, the fluid is stably stratified for 
positive Rrr. and unstably stratified for negative RN. 

It is worthwhile to point out that although the 
problem studied in this paper is that of nonisothcrmal 
flow up a vertical pipe, the results may also be used 
to dcscribc nonisothcrmal flow down a pipe. This is 
because the equations governing heated upward flow 
arc identical to those of cooled downward flow, and 
the equations of cooled upward flow arc identical to 
those of hcatcd downward flow. 

The basic-state of the fluid is steady, parallel. lami- 
nar fully developed flow. If  these assumptions arc 
applied to (I), the basic-state will be a function of the 
radial coordinate only, and the governing equations 
will simplify to 

where W, and O0 represent the basic-state velocity 

and tempcraturcs respectively. The boundary con- 
ditions [or the basic-state arc 

The effect of the vertical temperature gradient appears 
in the basic-state cncrgy equation as a non-uniform 
source term, with a radial distribution and magnitude 
equal to the basic-state velocity, W,,. Consequently, 
the basic-state tcmperaturc distribution in the radial 
direction is modilicd from that which would occur 
with a uniform wall temperature boundary condition, 
where there is no vertical temperature stratification. 
If  it is assumed that the axial pressure gradient is 
constant. the term Re (dP,,/dz) may be determined by 
the rcquircmcnt of global mass conservation 

and the basic-state becomes independent of Rc and 
Pr. The solution of the basic-state may be obtained 
analytically by the use of Bessel functions with com- 
plex arguments [I]. However, in the results prcscnted 
here. the equations were solved numerically using a 
spectral/collocation tcchniquc, which was later used 
as part or the instability analysis. Basic-state velocity 
profiles for Raylcigh numbers of 0, 100 and - 100 
are shown in Fig. I. These plots show that as the 
magnitude of RN increases, the buoyant forces distort 
the velocity profiles. When the outer wall is heated 
(Ra > 0), the Row near the wall is accelerated. In this 
cast, to maintain a constant mass flow rate, the fluid 
in the center of the pipe is proportionally decelerated. 
When the pipe wall is cooled (Ro < 0), the opposite 
occurs. As the magnitude of Rrr increases, this model 
will eventually predict a parallel reverse-flow region 
in the pipe. However. as the plot illustrates, for both 
RN > 0 and RN < 0, points of inflection appear in the 
basic-state velocity protiles, indicating potential 
for inviscid instability. This is verified by the linear- 
instability calculations, which demonstrate that a 
stable reverse flow region is impossible. 

As pointed out in ref. [2], in the case of Ru < 0. the 
fluid layer is initially unstable because of the unstable 

FIG. I. Basic-state velocity profiles. 
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stratification. On the other hand, with Ro > 0, the 
density decreases in the vertical direction and the fluid 
layer is stable. Consequently, instabilities of the stably 
stratified case must be due to the fluid motion, while 
those for the unstably stratified case may be either 
motion-induced. or due to Rayleigh-Taylor insta- 
bility. Therefore. the physical nature of the insta- 
bilities observed at Ra > 0 may differ substantially 
from those at Ra < 0. 

The linear-instability of the basic-state is studied by 
subtracting the basic-state from the governing equa- 
tions and neglecting the nonlinear terms. The normal 
mode form is assumed for the disturbances as $(r, 
4, Z, I) = $(~)e’*“~“‘+‘“‘~, where a is the axial wave 
number, II the integer azimuthal wave number, c = 
c,+ ic, the complex disturbance wave speed and n de- 
notes a disturbance quantity. The linearized dis- 
turbance equations are 

(3a) 

+a%+ +$ = 0 (3b) 

in Rejl -i,,-c+F+fi 
iaRe(W-c)L;+-- 1 

r I ).z r’ 

+a?r;- 7” = 0 (3c) 

.̂I 

iaRe(W-c),?+ReicW’+irRefi-\?“-F 
12’1~ 

r +r? 

+a%+ Rad = 0 (3d) 

iaRePr(W-c)d+RePrIjg.-d”-$+q 

+a'lj- bB = 0 (3e) 

where the ’ denotes differentiation with respect to r. 
The boundary conditions at the pipe wall are : 

i(l) = i;(l) = G(l) = 6(i) = 0. 

As explained in ref. [I], the boundary conditions at 
r = 0 will depend on the value of the azimuthal wave 
number, n. For n = 0, they are: 

C(O) = C(O) = D’(0) = l?(O) = 0. 

For II = 1, they become : 

ii(O) + S(O) = G(O) = 6(O) = 0. 

For n 2 2, they are : 

C(O) = C(O) = IC(O) = 6(O) = 0. 

Equations (3) and the boundary conditions form an 
eigenvalue problem for the complex disturbance wave 
speed, c, with the disturbance being unstable for c, 
greater than 0. As explained in ref. [I], the equations 
were discretized using a spectral Chebyshev col- 

location technique, and the stability boundary was 
determined by a numerical search of the (Ru, Rr. Pr. 
r, n) space to determine that locus of points where 
c, = 0. For particular values of Pr and Re. as the 
magnitude of Ru increases. the point on the neutral 
curve that first becomes unstable defines the minimum 
critical Rayleigh number. RN,. 

2.4. Fi~lir~~-at,lpliru~e itwtabilil!* 
Linear-instability theory determines the point at 

which an infinitesimal disturbance becomes unstable, 
but predicts unbounded exponential growth of the 
disturbance. As the disturbance grows to finite size, 
however. nonlinear effects modify the growth rate 
predicted by linear theory. To study these effects, the 
weakly nonlinear instability theory developed in ref. 
[9] is applied to this problem. 

To study finite-amplitude instability using weakly 
nonlinear theory, the dependent variables are first 
separated into Fourier components of a disturbance 
wave predicted by linear-instability theory. The equa- 
tions governing the harmonic components are then 
solved using a perturbation expansion. In this prob- 
lem. we write the Fourier expansion of, for example. 
the axial velocity as follows : 

hfr. f$, ;, 1) = W(r. r)E” + \t‘, (r, s)E’ 

+w,(r, s)E’+ ... +c.c (4) 

where E = exp (ia(z-c,t) +i@), r and II are the wave 
numberscorresponding to Ru, and cr is the wave speed 
of the most unstable disturbance, given by the real 
portion of the eigenvalue from linear theory. In this 
problem, we will obtain only the lowest order cor- 
rection to the exponential growth predicted by linear 
theory, and inclusion of E’ and higher harmonics is 
not necessary. 

The functions for the harmonic components are 
further decomposed by expanding in terms of the 
small parameter. Using the method of multiple scales 
with (I, T  = c,f) results in 

da - ,,=,+c,e. CT (5) 

The following expansion of the E’ wave is consistent : 

w,(r.~) = c,‘!‘B(T)w,,(r)+c;“BIBI’~(.,,(r)+O(c,S”) 

(6) 

where B is an order-one amplitude function. The 
physical amplitude of the ir10 functions is therefore 
A = (c,) ‘!‘E. The expansion for the E’ wave given by 
equation (6) leads to the following forms for the E” 
and Ez waves : 

W(r,r) = W,(r)+c,I&r)jZW,(r)+O(cf) (7) 

wz(r, T)  = C,@(T))‘Wzo(r) +O(c’). (8) 

Terms of order (q)’ and smaller are not necessary in 
the present analysis. Expansions of the other depen- 
dent variables corresponding to equations (6)-(8) are 
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given by similar expressions. The system of harmonic 
equations obtained by substituting equations (Z+-(8) 
into the governing equations may be solved sequen- 
tially in increasing powers of c,. At order (ci)’ the only 
non-zero contribution is from the E’equations, which 
become those of the basic-state. Therefore, the func- 
tions W,, and 0, are given by basic-state velocity 
and temperature distributions, respectively. At order 
(ci) ‘I’, the E’ equations become those of linear- 
instability, and the other harmonic components are 
zero. Consequently, the functions u , 0, v  , 0, W, 0 and 0, 0 
are given by the eigenvectors of linear theory at the 
particular values of Ra, a and n being considered. At 
order c,. the equations for the E” and E’ waves pro- 
duce nonhomogeneous equations for the mean-flow 
distortion functions, I#‘, and O,, and for the harmonic 
functions, u?,,, oZO, IV?,, and OZO. The nonhomogeneous 
terms in these equations involve only the functions 
u,“, /I,“, II’,~ and O,,, which are known from lower- 
order analysis. Therefore, these equations may be 
easily solved, since the amplitude function factors out 
on each side of the equations and may be canceled. 
At order (c,)“‘, the E’ equations become non- 
homogeneous equations with the left-hand sides con- 
sisting of the linear-instability operators operating on 
the functions U, ,, o,, . II’,, and 0, ,, and the right-hand 
sides consisting of terms proportional to dB/dr, Band 
B1 BI ‘. The coefficients of the terms on the right-hand 
sides consist of the functions determined from the 
analysis at lower orders. Since the homogeneous 
forms of the equations are exactly those of linear- 
instability theory, the integrability condition requires 
that the right-hand sides be orthogonal to the func- 
tions satisfying the homogeneous adjoint problem. 
This condition leads to a Landau equation 

dB 
- = aB+a,BIBI’. 
dr 

The constant a, is the first Landau constant, and 
is obtained through application of the integrability 
condition. Equation (9) represents a modification to 
the exponential growth or decay of a disturbance pre- 
dicted by linear theory. If  the real part of a, is negative, 
a supercritical equilibrium amplitude is predicted as 
)A 1’ = c, I BI ’ = - ac,/(u ,)r, where ( ), denotes the real 
part. In the case of (u,)~ positive, a subcritical insta- 
bility is predicted with a threshold amplitude of 
IAl’= Iad(~~M. 

In addition to the disturbance amplitude, the 
weakly nonlinear theory predicts the following order 
ci modulation to the wave speed due to the disturbance 
growth [IO] 

C’ = c +c.o, r r 
’ (u,), 

where c, is the wave speed predicted by linear theory, 
and (u,)~ is the imaginary portion of the first Landau 
constant. 

3. RESULTS AND DISCUSSION 

3. I. RetGw cf linear-instabiliry resulrs 
Figure 2 is a diagram of the linear-instability 

boundary for water (Pr = 6) in the Ra-Re plane. 
Positive values of Ra imply stably stratified flow, and 
negative RN means the flow is unstably stratified. As 
mentioned in refs. [I, 21 the least stable azimuthal 
mode is always n = I for unstably stratified flow, and 
is also n = I for the stably stratified case except for a 
small range of Re between 50 and 150, where n = 0 is 
less stable. In both cases, the least stable Ru is almost 
independent of Re for Re > 50. Since the experimental 
results for water [5, 61 are at Re > 50, in this paper 
we concentrate on the results at a single value of Re 
equal to 600, since all the important features of the 
results for other Re in this range are found to be 
identical. Furthermore. at small Re, the results are 
unreliable since the mean flow has been scaled by the 
average velocity, which is approaching zero in this 
region. In this limit, the problem has a unique stability 
character which may be investigated by defining a 
dimensionless temperature based on the rate of mean 
temperature increase in the fluid [ 1 I]. 

Since it is known that isothermal flow in a circular 
pipe is unconditionally stable to infinitesimal dis- 
turbances [ 121, the linear-instabilities shown on 
Fig. 2 must be either of the thermal-shear, thermal- 
buoyant or Rayleigh-Taylor type. This may be deter- 
mined by investigation of the production and dissipa- 
tion of disturbance kinetic energy at the neutral curve. 
The balance of disturbance kinetic energy for an 
infinitesimal disturbance is given by 

where the brackets ( ) imply integration over the 
volume of the disturbance wave. The integrals in equa- 
tion (11) may be evaluated by making use of the 
eigenvectors obtained in the linear-instability analysis. 
As equation (I I) demonstrates, at the neutral curve a 
steady balance between the production and dis- 
sipation of disturbance energy is maintained. The first 

0 100 200 JO0 400 500 800 700 BOO 

Re 

FIG. 2. Linear-instability boundary in Ra-Re plane. 
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term in equation (I I) represents the shear production 
ofenergy due to the Reynolds stress/mean-flow strain- 
rate interaction. The second term represents the pro- 
duction of kinetic energy from the buoyant potential 
due to the fluctuating body force, and the last term 
represents the dissipation of kinetic energy due to 
viscous action. As this equation shows. in non- 
isothermal flow, the disturbance kinetic energy may 
be obtained from two sources in a thermally induced 
instability. I f  the shear production is dominant, the 
instability will be of the thermal-shear type. while if 
the buoyant production is pre-eminent, the instability 
will be tither a thermal-buoyant or a Rayleigh-Taylor 
mode. 

In this case, at Re = 600, in stably stratified flow, 
the results demonstrate that Eb = 1.09, E, = -0.09 
and Ed = - 1.0. Therefore, this is the thermal- 
buoyant mode, since the Rayleigh-Taylor mode 
does not appear with Ra > 0. This is the expected 
result, since it has been demonstrated in ref. [8] that, 
in a heated annulus, the thermal-buoyant mode will 
be dominant for Pr > 2.5. In the case of unstable 
stratification at this Rr, the buoyant mechanism 
is also dominant, Eb = 1.01, E, = -0.01 and 
E,, = - 1.0. In this case, however, it is not clear 
whether the instability is the thermal-buoyant or the 
Rayleigh-Taylor mode, since they both obtain most 
of their energy from the buoyant mechanism. 
However, we find that the least stable thermal insta- 
bility is the Rayleigh-Taylor mode, since the dis- 
turbance appears as two long traveling waves moving 
in opposite directions, one on each side of the pipe 
PI. 

3.2. Notditwur results 
Figure 3 is a plot of the linear-instability boundary 

in (Rmx) space at Re = 600, Pr = 6 and n = I for 
stably stratified flow. As this plot illustrates, the criti- 
cal value of Ra does not vary a great deal for a wide 
band of axial wave numbers. For example, the least 
stable point on this curve is Ra, = 70 at c( = 0. I. How- 
ever, by Ra = 75, the flow is linearly unstable for all 
wave numbers between tl = 0.04 and 2.7. Therefore, 
as Ra increases, the mode that will be amplified is not 
clear from this analysis. since any of the potentially 

FIG. 3. Linear-instability boundary in f&-cl plane and c, vs 
a at Re = 600 for Ra > 0. 

unstable waves may grow and interact with other 
unstable modes. Because of the wide band nature of 
this instability. prediction of the detailed flow patterns 
and temperature distributions at points away from 
the neutral curve is beyond the scope of the classical 
weakly nonlinear theory. On the other hand. the 
results are still formally valid in the limit as RN 

approaches Ra,. and, consequently, the analysis may 
be used to explain the initial trends in the transition 
process. 

The values of u, at selected points along the neutral 
curve shown in Fig. 3 are given in Table I. The results 
in Table I show that n,, is negative for all wave 
numbers. Therefore, this analysis predicts super- 
critical instability. in agreement with the experimental 
observations. The results in Table I also show that 
the magnitude of Cllr increases with increasing r at this 
condition. As mentioned in Section 2.4, the physical 
amplitude of supercritical disturbances is given by 
IA 1’ = - ~,a,,, with the numerical value of n,, depend- 
ing on the normalization chosen for the eigenvectors 
obtained from linear-instability theory. Therefore. for 
constant values of c, and uIr, the shorter wavelength 
(larger wave number) disturbance will amplify faster. 
The results in Table I indicate. however, that the rate 
of increase of the magnitude of (I,~ with increasing 
wave number more than compensates for this effect. 
and that the long wavelength disturbances will be 
amplified faster. On the other hand. the kinematics of 
long wavelength disturbances associated with small 
wave numbers result in minimal amounts of trans- 
verse mixing of the fluid. Consequently. their effects 
on heat transfer and friction coefficients are pro- 
portionally smaller than those of similar waves of 
shorter wave lengths, where the transverse velocity 
components will be larger. 

As may be concluded from equation (IO), for super- 
critical instability if the value of (I,, is negative. the 
growth of the disturbance will increase the wave speed, 
while the opposite will occur for positive u,,. There- 
fore, the results in Table I show that the wave speed 
of the long wavelength disturbances, with r < 0.2, will 
be slowed slightly by the disturbance growth. On the 
other hand, with (x > 0.2, the disturbances will be 
accelerated. and the observed wave speeds will be 

Table I, Values of the first Landau constant at the neutral 
curve for Ru > 0 

R<> RU, a UI 

600 71.4 0.05 - 1.20+0.7Oi 
600 70.0 0.075 -2.60+ 1.3Oi 
600 70.9 0.1 -4.49+ 1.5% 
600 72.7 0.2 - 14.6+O.lOi 
600 70.8 0.4 -54.4- 15.li 
600 70.4 0.6 - Il5-54.4i 
600 70.4 I .o -273-210i 
600 71.3 I.5 -483 - 507i 
600 72.6 2.0 - 652 - 964i 
600 74.3 2.5 -745- l441i 
600 76.4 3.0 -76l- 1907i 
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higher than those predicted by linear-instability 
theory. 

It is worthwhile to mention that the weakly non- 
linear theory will fail if the complex wave speed of the 
fundamental wave is an eigenvalue of the homo- 
geneous form of the harmonic equations. Intuitively, 
this seems an unlikely contingency. However, in this 
problem we do find that the eigenvalue is insensitive 
to changes in wave number for stably stratified flow. 
To illustrate this, consider the plot of c, vs the axial 
wave number in Fig. 3, for stably stratified flow at 
Re = 600. These results show that the wave speed c, 
does not vary significantly with a. The neutral curve, 
also shown in Fig. 3, represents the point c, = 0, and 
as has been discussed, Ru, is likewise insensitive to 
changes in a. Since the eigenvalues of the fundamental 
and harmonic problems are never found to be ident- 
ical, there is no theoretical difficulty in solving the 
equations. However, the numerical values of the 
eigenvalues are close enough so that care must be 
taken to avoid numerical difficulties in the com- 
putation of the harmonic functions. In addition, these 
results imply that linearly unstable oscillations of the 
harmonic wave may not be ignored except very near 
the neutral curve. 

The linear-instability boundary in the (Ra-a) space 
at Re = 600 for unstably stratified flow at Re = 600 
is shown in Fig. 4. As mentioned earlier, in this case 
the least stable thermal mode is the Rayleigh-Taylor 
instability which is a long-wavelength instability as 
the figure illustrates. However, a dip in the neutral 
curve near a = 0.8 is caused by the presence of the 
asymmetric thermal-shear instability. Comparison of 
this result with Fig. 3 illustrates the instability bound- 
ary for this case encompasses a narrower waveband 
than is the case with stably stratified flow. 

The results of the calculation of a,, for Ra < 0 at 
Re = 600 are given in Table 2. Since a,, is positive at 
a = 0.10, these results indicate that the flow is poten- 
tially subcritically unstable, in agreement with the 
experimental observations. On the other hand, the 
value of a,, is negative over most of the neutral curve. 
This is illustrated in Fig. 4, where the neutral curve is 
represented by a broken line when a,, > 0, while a 
solid line indicates ulr < 0. As these results show, only 
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FIG. 4. Linear-instability boundary in Ra-z plane at 
Re = 600 for Ra -c 0. 

Table 2. Values of the first Landau constant at the neutral 
curve for Ra < 0 

RC Ra, a 

600 -87.2 0.05 
600 87.3 0.10 
600 95.6 0.20 
600 -112 0.40 
600 -127 0.60 
600 -132 0.80 
600 -136 I.0 

aI 

-0.05-0.09i 
0.07-0.X 

-0.20-0.52i 
-0.54-1.511 
-4.53-0.241 
-65.7f4.92i 
- 107+0.40i 

a relatively narrow band of wave numbers, from 
a = 0.07 to 0.13, are found to be subcritically 
unstable. In addition, the magnitude of the Landau 
constant in this region is relatively small, indicating 
that a large amplitude disturbance will be necessary 
to initiate subcritical instability. On the other hand, 
the value of a,, is also small at supercritical wave 
numbers, which indicates that the amplitude of a 
supercritical disturbance will grow quickly as the mag- 
nitude of Ru increases. Because of the large amplitude 
necessary to induce subcritical instability, the results 
presented here indicate that a possible flow transition 
will first involve the rapid growth of a supercritical 
Rayleigh-Taylor instability with an azimuthal wave 
number of n = I, followed by secondary instabilities 
that lead quickly to turbulence. This is consistent with 
the experimental observations of Scheele and Han- 
ratty [5] who noted that, although the transition to 
turbulence was abrupt, the velocity profiles tended to 
become asymmetric before the unsteady motion set 
in. 

3.3. Discussion 
To gain further insight into the underlying physical 

phenomena that determine the behavior of subcritical 
and supercritical disturbances, the Landau equation 
(9) may be put in the following form [IO] : 

dlA[’ 

dr 
~ = 2ac,IAIZ+(P,,, +E,z+P,,o+T,, +D,,)IAl“ 

= L,+P,,, +&+P,,,,+T,, +D,,. (w 

The expressions for the terms on the right-hand side 
may be found in the Appendix at the end of this paper. 
The first term on the right-hand side of equation (l2), 
L,, is the amplification rate from linear theory. Lo will 
be positive for supercritical states, and negative for 
subcritical states. The second term, P,,,, represents 
the decrease in the gradient production of disturbance 
kinetic energy due to the interaction between the fun- 
damental disturbance and the distorted mean velocity 
gradient. Since the energy required for the distortion 
of the mean flow is obtained from the disturbance, 
this term will be negative, and will reduce the growth 
rate of a supercritical instability. The third term in 
equation (l2), E,,, accounts for the transfer of dis- 
turbance energy from the fundamental to the har- 
monic wave. The last three terms, P, , o, T, , and D, , , 



all arise bccausc of distortion of the radial shape of the 

fundamental wave caused by the disturbance growth. 

Since the terms P, ,,, and E, z lead to supcrcritical 
instability. for subcritical instability to exist. these 

terms must bc positive and outweigh the combined 

effects of P, ,, , and E , ?. The term P, , ,, represents the 
modification of the gradient production of dis- 

turbance kinetic energy due to the change in the dis- 

turbance shape. The next term. T, ,, represents the 
modification in the buoyant production of dis- 

turbance kinetic energy due to the change in shape 01 

the disturbance, while the last term. D, , . rcprcscnts a 
modification in the rate of viscous dissipation of kin- 

etic cncrgy. If P, ,,, is positive, the disturbance contour 

is changing to a shape more favorable for shear pro- 
duction of disturbance cncrgy. Likcwisc. if T, , is posi- 

tive. the modified disturbance shape is more favorable 

for buoyant production of disturbance cncrgy. while 

positive values of D, , imply a decrcasc in the viscous 
dissipation rate of the disturbance kinetic cncrgy. 

The terms in equation (12) are plotted vs the square 

of the disturbance amplitude for the supcrcritical 

thermal-buoyant instability at RP = 600. r = 0.6 and 
Ra = 70.5 in Fig. 5. Since this flow is linearly unstable, 

the magnitude of L,,, increases linearly with increasing 
amplitude. As these results demonstrate, dlAl-‘d/ is 

negative for A > A,, and positive for .4 -C A,. Thcrc- 

fort, A = A, is a stable equilibrium point. since the dis- 

turbance amplitude will grow for .3 < A,, and decay 
for A > A,. The results also show that the modi- 

fication in the rate of buoyant cncrgy production. 

characterized by T, , , increases the growth rate of the 
supercritical instability. However. the destabilizing 

effect ofT , , is offset by the combined stabilizing cffccts 

of Plll,~ PI,,, and D, ,. Of these terms. P, ,,, is sub- 
stantially smaller than P, ,, , and D, , . as the plot shows. 

The results also demonstrate that the transfer of 

energy to the harmonic, E, ?, is very small in this case. 
The conclusion is that with the supercritical thcrmal- 

buoyant mode. even though finite-amplitude effects 

increase the rate of buoyant production, the net rate 
of disturbance energy production is decreased by non- 

linear effects. This is primarily due to increases in the 
viscous dissipation rate and the rate of transfer of 

FIG. 5. Plot of terms in equation (12) vs amplitude ratio 
supercritical thermal-buoyant instability with Ro > 0 

for 

energy from the fundamental W;IVC back into the IIIC;III 
How. 

AS has been discussed. the RaylcigbTaylor insta- 
bility has a s~~~all region of subcritical instability 

butwccn Y = 0.07 and 0.13. To investigate the pro- 

cc~scs rcsponsiblc for this behavior. in Fig. 6 WC plot 
the magnitude of the terms in equation (12) vs the 

ratio of the square of the disturbance amplitude and 
the subcritical threshold amplitude at x = 0.1 and 

Rrr = 87.2. In this cast. the tlow is linearly stable. and 

L,, decreases linearly with increasing amplitude. The 
results also show that the point .‘I = .-I, is an unstable 

equilibrium point since the disturbance will grow il 

A > A,, and decay if ,4 < rl,. As with the supercritical 
t1icriiial-buoyant mode. in this cast. the disturbance 

growth rate is dccrcascd by El2 and P,,,,. In addition. 

the transfer of cncrgy from the fundamental WIW to 

the harmonic. charactcrizcd by E,?. is much more 

significant for this instability. \vhile the transfer 01 
cncrgy from the disturbance back into the mean llou 

is of less importance. as Fig. 6 illustrates. In this cast. 
however, the stabilizing cfl‘ccts of thcsc terms arc ovcr- 

come by the combined destabilizing clti’cts of the 
terms arising from the change in the shape of the 

fundamental wave. P, , ,), T,, and D, ,. As with the 

thermal-buoyant instability. the incrcasc in the rate 01 
buoyant production of cncrgy is the largest dcsta- 

bilizing term. However. the dccrcasc in viscous dis- 

sipation and the increase in grad&t production arc 
also significant. as Fig. 6 illustrates. Thcrcforc. in this 

case. subcritical instability will occur as the dis- 
turbance amplitude incrcascs when the combined 

destabilizing effects caused by the change in the shape 

of the fundamental wave become larger than the sta- 

bilizing cfl‘ects due to the production of the harmonic 
wave and the distortion of the mcan-Row. 

As has been pointed out. in this problem the range 
of accuracy of the weakly nonlinear expansion is limited 

to the region very near the neutral curve bccausc 01 
the large wave band of disturbances that bccomc 

unstable at nearly the same value of Ro, in particular 

for the case of stably stratified Bow. This is because 

the assumption of a single dominant mode is strictly 

justifiable only in this limit. This limitation occurs 

FIG. 6. Plot of terms in cquakm (12) vs ampliludc ratio fol 
subcritical Rayleigh-Taylor inslability with Rtr < 0. 
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because the weakly nonlinear theory ignores linearly 
unstable modes of the harmonic wave and assumes it 
is forced entirely by the fundamental. The pre- 
sumption will be valid if the fundamental wave is 
amplified (c,, > 0) while all eigenmodcs of the har- 
monic wave arc damped (c,: < 0). Furthermore. even 
if the harmonic wave is itself linearly unstable. 
(c,: > 0). the forced components will dominate if 
I(.,, ] >> ]c,,J. However. if c,: % c,, . unstable eigcnmodes 
of the harmonic wave will appear which are the same 
order as those of the fundamental wave, and the waves 
will interact at second order. To study these phenom- 
cna rcquircs development of a wave-interaction 
theory for a continuous spectrum of unstable 
waves. which WC are prcscntly undertaking. 

3.4. l5flcYTs 011 IllJut trurls~er 
A Nussclt number may be defined for this problem 

as 

whet-c h is the convective heat transfer coefhcicnt and 
k the fluid thermal conductivity. The Nusselt number 
may bc determined by substituting the results of the 
weakly nonlinear calculations into equation (7), and 
evaluating the terms in equation (13). The results ol 
this calculation for Re = 600 and Ru > 0 at a wave 
number of x = I arc given by the single-wave results 
in Fig. 7. In this case, supercritical flow instability 
occurs at Rrr = 70.5. and the change in the rate ol 
increase of Nusselt number with increasing Ra is evi- 
dent at this point. This demonstrates that heat transfer 
correlations obtained analytically by USC of the par- 
allel Row assumption arc inadcquatc in mixcd- 
convection. For RN slightly larger than RN, = 70.4, the 
increase in the heat transfer rate predicted by this 
model will be accurate, since the analysis is valid in 
the limit as Rrr + RN,. On the other hand, although 
precise numerical results were not presented at values 
of RN that wcrc this small, the plot of Nusselt number 
vs Ra from the expcrimcntal work of ref. [3] indicates 
that the incrcasc in NLI due to instability is about 20% 

Ril 

FIG. 7. /Vl/ vs Ru at Re = 600. 

at Ra = 100. while the single-wave weakly nonlinear 
theory predicts a much smaller increase in Nusselt 
number due to instability at this point, as Fig. 7 illus- 
trates. This is not surprising, since. as discussed in the 
previous section. in this flow a continuous band 01 
waves become unstable at nearly the same time. 
Unfortunately. no dctailcd cxpcrimental mcasure- 
mcnts of the unsteady How patterns arc available to 
indicate which of the unstable waves bccomc domi- 
nant. However, the clfcct of multiple waves may be 
accounted for approximately by ignoring wave intcr- 
actions and including the contributions from each 
wave individually. I f  this approach is taken, the 
Nusselt number may be written as follows : 

Nu = Nu,, + i Nit, (14) 
I- I 

whcrc Nrr,, is the Nusselt number due to the basic- 
state. and the Nlr, are the individual contributions of 
each of the N unstable waves. Figure 7 also includes 
plots of NLI vs Rrr at RP = 600 for four and tight 
waves. As these results show. a more substantial 
increase in heat transfer is obtained by this model. 
with the tight wave model predicting the exper- 
imentally observed incrcasc in NLI of 20% at 
Ru = 100. However. since the results depend on the 
number ofwavcs present, unless detailed experimental 
measurements become available which would allow a 
proper choice of wave numbers to bc included in the 
model. it is difficult to make conclusions about the 
detailed structure of the unsteady flow. In addition, 
this analysis does not include the nonlinear interac- 
tions which will be present among the unstable waves. 

4. CONCLUSIONS 

Analysis of the energy transfer for the instability of 
stably stratified flow in a heated vertical pipe has 
shown that this is the thermal-buoyant instability. 
The weakly nonlinear instability theory has predicted 
supcrcritical instability for all wave numbers, in agree- 
ment with the experimental observations. Analysis of 
the terms which make up the real part of the Landau 
constant shows this instability is supercritical because 
increases in the viscous dissipation rate and the rate 
of transfer ofcnergy from the fundamental wave back 
into the mean flow overcome the destabilizing effect 
of an increase in the rate of buoyant production. It is 
found that a wide band of wave numbers become 
linearly unstable soon after the initial instability. 
Therefore, even though the weakly nonlinear theory 
is valid in the limit as Ru approaches Rn,, the theory 
will be inaccurate as Rn increases, since it considers 
only a single dominant wave. As expected the increase 
in Nusselt number due to Row instability predicted by 
the single-wave theory is smaller than the exper- 
imentally observed values. This is due to the Fact that 
the instability involves more than the most unstable 
wave. A complete description of the phenomena 
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rcquircs consideration of a continuous band of 
unstable waves. which is currently being studied. 

The results for the unstably stratified case dem- 
onstratc that this instability is the Rayleigh-Taylor 

mode. The weakly nonlinear calculations indicate that 
the How is potentially subcritically unstable. again in 

agrecmcnt with the expcrimcntal observations. The 

subcritical instability occurs when the disturbance 

amplitude incrcascs to the point that the combined 
destabilizing efccts caused by the change in the shape 

of the fundamental wave bccomc larger than the sta- 

bilizing cfccts due to the production of the harmonic 
wave and the distortion of the mean-flow. On tho 

other hand, the weakly nonlinear theory predicts that 

a large amplitude disturbance will be necessary to 
initiate subcritical instability. while the amplitude of 

;I supercritical disturbance will grow quickly as the 

magnitudu of RN increases. Therefore. a possible flow 
transition will first involve the rapid growth ofa super- 

critical Rayleigh-Taylor instability with an azimuthal 

wave number of II = I. followed by secondary insta- 
bilities that Icad quickly to turbulcncc. This is con- 

sistent with the cxpcrimcntal observations of Scheclc 

and Hanratty [5] who noted that, although the tran- 

sition to turbulcncc was abrupt. the velocity proflcs 
tended to bccomc asymmetric before the unsteady 

motion scl in. 

A~lirroll,/c,c!clc,~~~~,~t/-Fullding for this work is provided by the 
National Scicncc Foundalion under Grants CTS 89-13537. 
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APPENDIX 

The balance of kinetic energy contained in Ihe fun- 
damental wave rcsulls in the following equation : 

(Al) 

where the overbar implies the spatial mean and the bruckels 

( ) imply integration over the volume of the wave. As equa- 
tion (I?) implies. if cquutions (6)-(8) are substituted into 

equation (A I). the equation which results will be of the same 
form as the real part of equation (9). The lbrmulas for the 

terms in equation (12) are given below. 

e,, = ~(lri,,+l.i,,+“‘io) (A21 


